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! ABSTRACT

r

We investigate multi-grid methods for solving linear systems arising from
arc-length continuation techniques applied to nonlinear elliptic eigenvalue
problems. We find that the usual wmulti-grid methods diverge in the
neighborhood of singular points of the solution branches. As a result, the
continuation method is unable to continue past a 1limit point in the Bratu
problenm. This divergence is analysed and a modified multi-grid algorithm has
been devised based on this analysis. In principle, this new multi-grid
algorithm converges for elliptic systems arbitrarily close to singularity and
has been used successfully im comjunction with arc-lemgth continmnation
procedures on the model problem. In the worst situation, both the storage and
the computational work are only about s factor of two more than the unmodified
multi-grid methods. %

Abbreviated Title: Multi-Grid Contimuation
Keywords: Mnlti-Grid, Arc-Length Continmation, Nonlinesr Elliptic Eigenvalue
Problems, Singular Systems.
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1. Introduction
Many problems of computational interest can be formulated as
G(u,A) = 0, (1.1)
where u represents the ’‘solution’ (i.e. flow field, displacements, etc.) and
A is a real physical parameter (i.e., Reynold’'s number, 1load etc.) It is
required to find the solution for some A-intervals, that is a path of
solutions, [u(A),A]. In this paper, we vse a class of continuation based on

parametrizing the solution branches by arc-length, say [u(s),A(s)]. A main

advantage of these arc-length continuation methods is that most singular

points on the solution branches can be handled without much difficulty.

F i R

. Equations of the form (1.1) are called nonlinear elliptic eigenvalue problenms
if the operator G with A fixed is an elliptic differential operator [2]. For
nonlinear elljptic eigenvalue problems, a major portion of the computational

work in the arc-length continuation methods is spent in solving large linear

elliptic systems. In this paper, we investigate the use of multi-grid [4]

B methods for solving these linear systems. It turns out that a
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straight-~forward implementation of the multi-grid methods fails in the
neighborhood of the singular points and this usually prevents continuation
pest limit points. This failure is analyzed and a modified multi-grid method

based on this analysis is devised. Even for very singular systems, the new

multi-grid algorithm performes satisfactorily and never requires more than

about twice the storage and computational work as the ummodified algorithm.

The arc-length continuation methods will be described in section 2 and
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the multi-grid methods in section 3. In section 4, computational results for
s model pioblem are presented, together with a description of the difficulties
encountered by the multi-grid method near a limit point. The behaviour of the
multi-grid method near simgular points will be analyzed in section 5. The
modified multi-grid algorithms designed to overcome these difficulties are

described in section 6. The paper emds with a summary in section 7.
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2. Newton's Method and Continuation Techniques

In this paper we are concerned with methods for computing a family or
path of solutions of (1.1). The methods we employed will be based on some

version of Newton's method.

2.1 Newton'’s MNethod
Given a value of ) and an initial guess uo for the solution u(i), we

perform the following steps repeatedly until ||5ui|| < ¢ is satisfied :

6! su! = - 6(ain) (2.1)

ui+1 = ui + Bui. (2.2)

In the above, subscripts demote partial derivatives and so Gu denotes the
Jacobisn of the operator G (with respect to u). This procedure will generally
converge quadratically when it does converge. However, as is well known, in
many instances it will fail to converge when the imitial guess is not 'close’

to the true solution,

2.2 Natural Continuation

A plausible procedure for overcoming this convergence difficulty and also
for determining the dependence of u on A is to start at a known solution
(no.lo) on the solution curve and use it as initial guess for a Newton—type
iteration to find the solution for a neighboring point on the solutiom curve
with A close to lo. The procedure is then repeated. VWe can improve on this
by computing the derivative, v, st a known solution and use it to get a

better initial guess for the mext value of A in s predictor-corrector fashion.
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We «call this a natural continuvation procedure because it corresponds to
parametrizing the solution curve by A, the naturally occurring parameter. A

specific form of this is the more or less well-known:

Euler-Newton Continuation Procedure:

Given a known solution (uo,lo). we compute the solutions at nearby values
of A as follows:
1. First compute the derivative u, at (no.xo) from

G, g, =-G. (2.3)

2. Perform an Euler predictor step:

o =
u By + U, (A - xo). (2.4)

3. Use no as initial guess in Newton'’s method :
6} @!*! - od) = - el (2.5)

until convergence.
4, Use (u(Ar),r) as the new (uo.xo) and go back to Step 1.

Note that the computation of the derivative o, does not cause much
computational overhead because we usually have the factorization of the
Jacobian Gn computed already in the Newton step. Using such a

predictor—corrector method will often allow us to take a much bigger step in A

and thus reduce the overall cost of determining the dependence of u on A.

Unfortunately, this procedure needs some modification in order to handle
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general nonlinear systems because of the possibility of existence of nonunique
solutions. The nonuniqueness usually manifests itself in the form of
existence of ‘'singuler’ points where the Jacobian Gn is singuler (see Figure
2-1). Points such as point A in Figure 2-1 are called limit points (or
turning points) and points such as point B are called bifurcation points.
These singular points are further characterized by the conditions that Gk ¢
Rnnge(Gu) at a limit point and that Gl € Rnnge(Gu) at a8 bifurcation

point [12].

The difficulties that a natural continbation procedure will eancounter at
singular points are three-fold. First of all, since Gu is singular at these
points, Newton’'s method will at best be linearly convergent, making it much
more costly to compute the solution. Moreover, near s limit point, there may
not exist a solution for a given value of A (see Figure 2-2) and hence the
iterations must fail to converge. Lastly, we need some mechanism for

switching branches at a bifurcation point.

2.3 Arc-length Continuvation

In the psendo arc-length continuation approach [12), these difficulties
are overcome by mnot parametrizing the solution u by A. Instead, we
parametrize the solution branches using an arc-length parameter s, and specify

how far along the current solution branch we want to march.

To be more specific, we let s be the arc—length parameter, and treat u(s)

and A(s) as functions of s. We can compute the 'tangent’ [n(so), K(So)] (where

e ey
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Figure 2~1: A Typical Bifurcation Diagram
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Figure 2-2: Failure of Natural Continuation Near Limit Points
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the dots denote differentiation with respect to s) of a known solution at s=so

from the following two equations:

Gu o, + lo G, = 0, (2.6)

Ilu(,ll2 + Ilol2 -1 =0, 2.7

Equation (2.6) is obtained from differentiating G(u,A) = 0 with respect to s
and (2.7) imposes the arc-length condition. We could theoretically generate
the solution curve by integrating the initial value problem obtained by
solving (2.6), (2.7) for ;(s) and i(s). Although this process is subject to
the usual instabilities inherent in solving initial value problems
approximately, it can be an extremely effective procedure. Indeed onr pseudo
arc-length continuation procedure can be viewed as a method for stabilizing

Euler integration of (2.6), (2.7),

In the pseudo arc—-length continuation procedure, we advance from S to s
along the tangent to the solution branch and require the new solution u(s) and

A(s) to satisfy
N(u(s),A(s)) = BE(u(s) = ulsy)) + Ag(A(s) = A(sg)) = (s = sg) = 0.  (2.8)
In addition we require, of course:
G(u(s),r(s)) = 0. (2.9)

Equation (2.8) is the linearization of (2.7) and as indicated forces the new
solution to lie on 2 hyperplane perpendicular to the tangent vector to the

solution curve at sp end at a distance (s*so) from it. Equation (2.9)




Figure 2-3: Pseudo Arc~-length Continuation
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requires u(s) and A(s) to lie on the true solution curve (Figure 2-3). We now

solve the coupled system (2.8) and (2.9) for u(s) and A(s), given the step

size (s-so) (efficient strategies for choosing the step size are discussed
in [23)). We use Newton's method, in which case we have to solve the

following linear system at each iteration:

SRR
Al 1= T |
sl INu N

{2.10)
8a

N

, |
|
==l |

] 1l !
It can be shown that at limit points, where Gu is singular and Gk ¢

Range(Gn). the lipnear system in (2.10) is nomsingular (see [12]) and therefore

Newton's method for the coupled system (2.8) and (2.9) is well-defined. Hence

l.iwit points present no problem and even guadratic comvergence is achievable.

At bifurcation points, where Gu is singular and Gl £ Rnnge(Gu). things
are more complicated. In the simplest case of only one branch bdifurcating
from the main branch (simple bifurcation), an additional higher order
condition involving Gnu' Gul and Gll has to be satisfied. It can be
shown [12] that this condition, together with (2.6) and (2.7) and the left and
right pull vectors of Gu' enable two solutions for ‘;o'io’ to be computed at a
simple bifurcation point, with one solution corresponding to each branch.
Using the sppropriate pair of (éo,io) in (2.8) allows branch switching. In

[7] a more detailed study of the singular behaviour and branch switching at

bifurcation is given.

v
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In order to solve the linear system in (2.10) by direct methods, several

approaches are possible. One way is to perform Gaussian Elimination on the
inflated matrix A, with some form of pivoting to insure stability. But this
approach completely ignores the sparse structure which is wusually found in
Gu's arising from mnonlinear elliptic eigenvalue problems. In order to take

advantege of the structure in Gu’ Keller [12) suggested the following

block-elimination procedure:

Algorithm BE: (block-elimination)

Solve Gu y= 6 (2.11)
and Gn z = - G. (2.12)
Set 82 = (-NXz-N)/(N,~-Nly) (2.13)

u Au
and bu = z -~ 6A y. (2.14)

Note that only systems with the coefficient matrix Gu have to be solved, so
structures in Gn can be exploited. Moreover, only ome factorization of Gn is
needed. It bhas been shown [27] that even when Gn is becoming singular,

Algorithm BE produces iterates that converge quadratically at limit points.

Continuation methods of various forms and levels of sophistication have
been widely used inm the engineering literature. For 2 recent survey of
numerical methods for bifurcation problems, see for example [18). The
approach taken here is due to Keller [12], and has recently been applied to

other problems in fluid mechanics ( [5), (61, [15) , [16], [251, (271 ).

A related approach suggested by Abbott [1] corresponds (in a loose way) to
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applying Algorithm BE to the matrix A with the last column permuted into the
first n columns so that the corresponding coefficient matrix inm Equations
(2.11) and (2.12) becomes nonsingular even at limit points. However, as has
already been pointed out, any structure or symmetry in Gu is lost in the

process, and hence that approach seems unsuitable for large elliptic systems

in two or three dimensions.

ey




3. Multi-Grid Methods

3.1 Iatroduction

The class of multi-grid (MG) methods that we use here is based on work by
Bakhvalov [3], Brandt [4], Federenko [8], Hackbush [10], and Nicolaides [19].
¥We shall only briefly describe here the particular MG algorithms that we have
used for 1linear elliptic problems that arise in our treatment of nomlinear

elliptic eigenvalue problems.

The particular way in which we use the MG idea is to use a hierarchy of
grids, rather than a single ome, in order to speed up the convergence rate of
the solution process. The MG process has some very desirable theoretical
properties: for certain elliptic operators on an n by n grid, it computes the
approximate solution to truncation error accuracy in 0(n2) arithmetic
operations and 0(n2) storage. It seems natural to consider the use of MG
methods for solving nonlinear eigenvalue problems. MG methods have been
applied to solution of 1linear eigenvalue problems by Hackbush [11] and

McCormick [17].

3.2 The 'Cycle C’' MG Algorithm

The particular MG algorithm that has been used in this study is based on
the ’Cycle C’ algorithm described in Brandt [4]. This is an algorithm for
iteratively solving the discrete equations approximating a linear elliptic

problem on a given grid, through interaction with a hierarchy of coarser

grids, taking advantage of the fact that the different discretizations on the

i g §

ot
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different grids are all approximations to the same continuous problem. Ve
note that there are other MG algorithms [4] proposed for implementing
continvation procedures outside of the context of the pseudo arc-length
framework. Some potential problems with these related algorithms are
discussed in section 3.4. Ve do not know how well such MG algorithms perform
and we hope to carry out our own investigation on such related methods in the
futvure. In this paper, MG algorithms are used to solve the fine grid discrete

equations that arise in the pseudo arc-length continuation procedure.

Consider a hierarchy of grids (Go.Gl. e .G"). with GM being the finest
one, defined on a domain O with corresponding mesh sizes (ho > h1 Y eees P
hM)‘ and all approximating the same linear elliptic problem :
LU= F on M (3.1)
U= 0 on 3.
The discrete equation om a grid Gk is written as:
t*v*=F oneck (3.2)
=0  on 0.
We are primarily interested in obtaining the approximating solutiom UM on the
finest grid, and we shall start with an initial guess on GM and apply a
standard relaxation procedure such as the Gauss-Seidel procedure. It is well
known that the error is reduced rapidly in the first few iterations but then
the reduction rate becomes very slow. By a frequency analysis, it can be
shown that the fast reduction occurs when the residual (or the error) in the

current iterate has large harmonics on the scale of the grid, the so—-called
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high-frequencies. Now at a stage in the iterative process where the error

reduction rate slows down, let the current iterate be n“. Define the error vM

in the iterate as v" = U" - uM. Then the error M satisfies the following

equation:
PR L S S N

vu =0 on ac“.

(3.3)

The residual Ru is computable and hence the original problem of solving for UM

can be reduced to an equivalent ome of solving (3.3) for vu. There seems to

be no obvious advantage in using (3.3) rather than continving with the

original relaxation procedure with nM. However, if the error vM and the

residual RM are smooth relative to GM, that is, if their bhigh frequency

components have been smoothed out by the relaxation procedure, then we can

approximate the solution of (3.3) on a cosrser grid, say GM-I, by solving :

LH—I vM—l - FM—l - I:-IRM on GM-I.
) (3.4)
VM-I =0 on ac“’l

After this problem is solved we can interpolate the solution vM—1 onto GM to
get:

M M M M-1
nev u- =old v + w, . Ty, V , (3.5)

where -1 is an interpolation factor, normeally taking the value unity and Ii

stands for some interpolation operator from ¢! to Gj. The solution process

for Equation (3.4) on GM_1 usually costs considerably less tham the cost of

solving Equation (3.3) on M. 1f VW is indeed smooth irelative to Gu). then
*1

should provide adequate resolution for vM and hence I:_l v"-l should be a

good approximation for vu.

This principle of transferring to a coarser grid

e YT o g s = e -Gl YOO SN - Tr e WS
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when convergence slows down can be applied gecursjvely. Thus for example, we

can start with a zero initial guess for v”"1 in Equation (3.4) and apply the
Gauss-Seidel relsxation procedure to the iterates on G"-l. When the
convergence slows down, we can again transfer to the next coarser grid GM—Z.
and so on, One can view the whole process as each grid smoothing just those
frequencies in the error that are high relative to its own mesh size, each
doing its job efficiently because these high frequencies are precisely those

that are efficiently smoothed out by relaxation procedures,

The control of when to transfer between grids can follow a fixed strategy
or an adaptive one. A fixed strategy could be of the following kind (see
Nicolaides [19]) : perform p relaxation sweeps on each grid GE before
transferring to a coaser grid Gk_l. and perform q relaxation sweeps before
interpolating back to a finer grid Gk+1. An adaptive strategy could be as
follow (see Brandt [4]) : transfer to a coaser grid when the ratio of the
residual norm of curremt iterate to the residual norm a sweep earlier is
greater than some tolerance n, and transfer to a firer grid when the ratio of
the residuel norm of current iterate to the residual norm on the mnext finmer
grid is less than another tolerance §. For simple problems 1like Poisson's
equation on a square, the overall MG efficiency is very insemsitive to which
particular strategy is used and what values are used for (p,q) or (n,5). Ve

shall refer to the above particular fixed strategy the (p,q) strategy and the

adaptive strategy the (n,5) strategy.

-~y
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3,3 Indefinite Problems

In the ’‘Cycle C’ algorithm just described, convergence on the lowest
(coarsest) grid Go is obtained by repeated relaxation sweeps. For positive
definite matrices, convergence on G0 can be guaranteed. For indefinite
problems, however, convergence om G0 cannot be obtained by repeated relaxation
sweeps, because the components of the error that correspond to eigenfunctions
with negative eigenvalues will grow as a result of relaxzation sweeps (see the
analysis in section 5). Therefore, for indefinite problems, a direct solution
(e.g. Gaussian Elimination) must be employed on the coarsest grid. If this
coarsest grid is fine enough, it will also provide corrections to those
growing components of the iterates on all finer grids. However, too fine s
grid for Go will increase the cost of the direct solution procedure. Hence 2
little care must be taken regarding the size of the coarsest grid for
indefinite oproblems. Fortunately, for 'mot too indefinite’ problems, Go can
be chosen coarse enough so that the direct solution on Go will not affect the
overall efficiency of the MG procedure seriously. Since indefinite problems
occur frequently in monlinear elliptic eigemvalue problems and, in particular,
in our model problem, we shall use such a direct solution on Go whenever

necessary.

3.4 Continnation Methods
Brandt [4] suggested using continuation methods in conjunction with the
MG procedure. His main ides is to use coarse grids for continuation, with

little work and crude accuracy, and only use the finmer grids at the final
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continuation step to achieve higher accuracy. V¥e have not pursued this idea
here. We believe that it will work as long as we stay away from singular
points, Around a limit point, however, the solution branches corresponding to
different grids may look like the situation in Figure 3-1, If we continue on
the coarse grid to l‘ and try to refine using the fimer grid, while keeping x'
fixed, we cannot hope to obtain a fine grid soluntion because A. is larger than
the fine grid limit point lf (i.e. no fine grid solution exists for A > kf).
In the opposite case, there is no coarse grid solmtion at A‘ 30 we cannot get

started on that grid. Hence, in general, we have to be extremely careful in

using MG methods and continuation around singular points.

Senia
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Figure 3-1: Limit Points for Different Grids
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4, Application to the Bratu Problem

4.1 Bratu's Problem
As a typical example of an nonlinear elliptic eigenvalue problem, we
consider the Bratu problem :
G(u,A) =Au + 4 e® =0 on @, (4.1)
u=20 on 3.
Equation (4.1) arises in many physical problems, for example, in chemical
reactor theory, radiative heat transfer, and in modelling the expansion of the
universe, The domain @ is the unit interval [0,1] in Rl. or the unit square
[0,11x[0,1) in R%, or the unit cube [0,11x[0,112{0,1] in R3. There are mno
bifurcation points in this problem, all the singular points are limit points.
The behaviour of the solution near the singular points has been studied
numerically [1, 26] and theoretically [14, 20, 21, 24). Typical solution
diagrams are shown in Figure 4-1. For both the one and two dimensional cases,
the problem has exactly ome limit point, whereas the three dimensional case
has infinitely many 1limit points (if @ is a sphere). From nowv on we only
consider the two dimensional case, with §} the unit square. For this case, the

L ] ®
value of A and the corresponding llull_ at the limit point are givem by : A

~

£ 6.81 and lloll_ = u(0.5,0.5) £1.39. For & > A°, Equation (4.1) has no

[ ]
solution, and for A ¢( A , it has exactly two solutionms.
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Solution for the Bratu Problem

Figure 4-1
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4.2 Arc-length Continuation with Direct Methods

We first apply the arc~length continuation method of Section 2 to
Equation (4.1) using direct methods. For this problem, 2 trivial solutionm is
(uw = 0, A = 0). Ve can thus start at this trivial solution on the lower
branch and march along the solution branch, past the limit point, and continue
on to the upper solution branch. Since the only singular point in this
problem is & 1limit point, this in principle presents no problem to the
arc—length continuation procedure, although the step size might have to be
reduced and controlled appropriately near the limit point., If desired, the

limit point can be accurately determined by other related techniques [1, 13].

The derivatives of the operator G in Equation (4.1) that are mneeded for

the arc-length continuation technique are
G, =A+2re, (4.2)
€ =¢" . (4.3)
Now if we approximate the Laplacian operator by the standard five-point
stencil on a uniform grid, the operator Gu will be approximated by the usual

block tridiagonal matrix and the operator Gx by & column vector.

In the application of the arc-length continuation technique, we will have
to repeatedly solve linear systems of eguations with the matrix givem by Gu‘
The solution of these linear systems is the central part of the arc-length
continuation method. Hence, an efficient linear system solver is crucial to
the overall performance of the comtinuation technique. In this section, we

present some computational results for Bratu’'s Problem using & direct method
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(Gaussian Elimination) of solution of the linearized difference equationms.
For large problems, this would be prohibitively expensive, However, the
results here are intended to demonstrate the performance of the comtinuation
procedure independent of the linear algebra method employed. In the next
section, we shall investigate the use of multi-grid methods for solvimg the
linear equations. It should be pointed out that Gu is generally not
separable, and therefore we cannot use fast Poisson solvers directly even on
rectangular domains. Moreover, this matrix is indefinite on the upper branch,
and hence iterative methods like Successive-Over—Relaxation ceannot be used

directly.

We present some of our computed results imn Figure 4-2, Only the
behaviour of the solution branch near the limit point for a few relatively
coarse discretizations are presented. These are to be compared with the
values : A‘ = 6.80811698 and u(.5,.5) = 1.3916603 for & grid with h = 1/24

with the nine~point finite difference operator as computed by Abbott [1] and

. . ~ .
“to the easily obtainable exact solution (A = 18/e = 6.62183, u = 1) for the

case h = 1/3. As expected, the step size ds = s - 50 had to be suitably
controlled near the limit point, but otherwise we encountered no difficulty in

continuing past the limit point.

4.3 Arc-length Continuation with Multi-Grid Methods
In this section we discuss the use of MG methods, rather than direct

methods, for solving the 1linear equations that arise in the continuation

procedure. The MG method that we use was described in Section 3 and

PR
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Figure 4-2: Computed Results for Bratu's Problem Near Limit Point

—-dr

| h | A | u A |
| | 6.000000 | 0.619061 | o0.9841 |
| | 6.485170 | 0.809435 | 0.9165 |
| 1/3 | 6.572858 | 0.883052 |  0.7948 |
| | 6.621830 | 0.999899 | 2.8889E-4 | <— 1limit
| | 6.614022 | 1.04937 | -0.4207 | point
| | 6.500000 | 1.00456 | 0.9632 |
| | 6.689007 | 1.14350 | 0.9041 |
I 1724 | 6.802681 | 1.34995 | 0.2965 |
| | 6.805499 | 1.39043 | -1.1732E-4 | <— 1limit
i | 6.805485 | 1.39368 | -0.0125 | point
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Gaunss—-Seidel is the smoothing relaxation process. Since the Jacobian matrix
Gu becomes indefinite or the upper branch, we use a direct method on the
coarsest grid inm the neighborhood of the the limit point and on the upper

branch.

We started the continuation proceduvre with the trivial solution (v =0, A
= 0), with h = 1/4 on the coarsest grid, and a2 total of four levels of grids,
making the finest grid with h = 1/32, As expected, the MG method worked fine
and we were able to continme up to very close to Lhe limit point, at ) = 6.804
on the 1lower branch. However, we noticed that the convergence of the NG
method deteriorates as we move im towards the limit point, For example, the
number of equivalent relaxation sweeps on the fimest grid required to reduce
the residual norm by an order of magnitude, which is a convenient way of
measuring the efficiency of MG methods, went from about 5 at A = 0 to about 20
at A = 6.803 and to divergence at A = 6.805. The divergence occurred ina the
MG method and not in the Newton iteratiom. It is pnot due to the possidble
indefiniteness of the Jacobian matrix on the fimest grid. This cam occur near
the limit point after a large Euler-predictor step. But we performed other
tests starting on the upper branch, away from the limit point, where the
Jacobian matrix is indefinite, and the MG method performed as efficiently as
on the lower branch. From our experience, this divergence is strictly a
phenomenon associated with the limit point, and to the best of our knowledge,

has never been discussed or anslysed in the literature. We study this effect

in section §.

M
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The exact value of A at which this divergence first occurs varies
slightly with the size of the coarsest grid ho, but is quite independent of
the other parameters of the Cycle C algorithm (e.g. n and 8). In all the
cases we have run, this divergemce made it impossible to continue past the
limit point. Therefore, a remedy is needed. Before we can find one, we must

understand the reason for the divergence.
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5. Analysis of Multi-Grid Methods for Near—singular Systems
For the opresent analysis, we assume that the limear operator L is
self-adjoint and has the complete set of orthonromal eigenfunctions {tl, 52.
.e.s } with corresponding real eigenvalues {"1 £ “2""']' The operator G in
the Bratp problem clearly satisfies the above hypothesis. Thus the solution U
to LU =F can be gritten as:
U= Z=1 b 8y m QP R (5.1)
We assume that the discrete approxzimations Lk to the continuous L are
symmetric. Thus they have gea] eigenvalues (ni < ug £ ... £ uﬁ] and a
complete set of orthonormal eigenvectors {{{. cg. cee s t:i. Here ;k is the
dimension of the matrix representing Lk. For wost reasonable approximations,

and certainly for the five point formula used for the Bratu Problem on &

rectangle this is true.

Assume that after iterating (relaxing) on the grid Gk, convergence has
slowed down and & transfer to the mext coarser grid is desired. Let the
current iterate be uk, and the corresponding ‘correction’ be vk so that Uk =

k k

u~  + v where Uk satisfies LkUk = Fk. The correction problem is given (as in

section 3) by:
LX vk = g = F¥ - 1K gk, in G¥; vF = 0 on ack. (5.2)

This is approximated on Gkl by

L1 1 o gk RE, in 6% vE71 = 0 on a6t (5.3)
Using the eigenvector expansion of vE in (5.2) we get:
N
vk = Zk nt ﬁz. (5.4)
=1

potr gt

T et
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where

k k .k k, ..
ai = {R ,ti> / "iu 3 1:.-.1Nk. (5.5)

Suppose now that (5.3) is solved exactly (by either direct solution or Cycle C

or any other means) on 651, The solution vE™! is then:

N
k-1

vk 1 o } .§‘1 g1, (5.6)
i=]l

where

k-1 _ . k-15k k-1 x-1
LIRS ESTD /owg (5.7)

i
The key idea in the MG method is that if vk and Rk ere smooth enough, they can

be well approximated on Gk-l. Thus it is important for efficiency

considerations that3

Ik vk-l ~  k

-1 =V (5.8)
Using (5.4) and (5.6), this is equivalent to:
N g N
k-1 .k k-1 ~ k ,k
Ek Sl P Zk s & (5.9)
1=1 =1
This will be the case if
k k-1 ~ _k
(a) Ik-l &i §i. liiﬁnk-l , (5.10)
k-1 ~ k .
() oy = af, 1GN, (5.11)

3We shall use the 'F' symbol to mean rather loosely 'approximately equal
to’, The meaning should be clear by context. Also, we shall assume that the

interpolation factor ¥i-1 in Equation (3.5) is equal to one unless stated
otherwise,

Cem b
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k ~
$50, iO>N_,. (5.12)
x-1

(c) a
Conditions (5.10) and (5.11) ensure that the coarse grid correction v
improves the lower modes of the iterate uk. Condition (5.12) is essentially

the smoothness required of vk on Gk (i.e. negligible higher modes).

Now condition (5.10) is satisfied for the low frequency eigenfunctions of
the continuous operator L if the grids Gk and Gk—1 are both fine enough to
resolve these eigenfunctions. This holds in many cases since the lower
eigenfunctions of most second order elliptic operators over smooth domains are
very smooth. For the Bratu problem, the eigenfunctions are very close to
products of sines and cosines (the eigenfunctions of the Laplacian operator)
and so the lower modes are easily resolved by very coarse grids. Condition
(5.11), on the other hand, turns out to be violated if the operator Lx is near
singular. This is what caused the divergence of the Cycle C algorithm in the
arc-length continuation procedure as we approach the limit point (see section

4.3). Ve shall analyse this case next.

From (5.5) and (5.7), condition (5.11) becomes:
-1,k ,k-1 k-1 = .pk ;k k
Iy RLES D omg R5E0 / owg,
i1 KN, (5.13)
We claim that if condition (5.10) is satisfied, and if the transfer from Gk to
Gk_1 is done only after the residual Rk has been smoothed, then the numerators

in (5.13) will have approximately the same value. To show this, we expand Rk
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N
k k
R = r, Ei' (5.14)
1=1
where
. 4
T, = <R .ti>. (5.15)

Thus the numerator on the right hand side of (5.13) is precisely r,. To

estimate the numerator on the left hand side of (5.13), we proceed as follows:

Ny
k-1 ok _ x-1 Xk
R 2;1 r I8

_1 N
- B il A E r, ¥ £, (5.16)
k i i’k i
1=1 =Nk_1+1

Now if condition (5.10) holds, its comverse:
k-1 .k ~ k-1 .

IR =R, 1N (5.17)
also holds. Also, if RE has been smoothed on Gk, then T, {for Nk_1<i$Nk] must
be small compared with T, [for 1115Nk_1] ). Altermatively (5.12) assumes u§ =
ri/p: =0 for i > Nk-l' Therefore, we can approximate in (5.16) by dropping

the second sum om the right hand side to get

-1
k-1 .k = -1
Ik R Eil T, gi . (5.18)
Hence
k-1 ok k-1, = .
<Ik R", {i > Ti» lingk_l. (5.19)
Therefore, from (5.15) and (5.19), we have, as claimed earlier,

k-1:k ,k-1, = ok .k
IR ) = CRE,E for 1KIKN, . (5.20)

The relations in (5.20) imply that condition (5.13) will be true if

Py g
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k 1

u [ wg =1, 1N, . (5.21)

Actually, these conditions need to be strengthened in order to guarantee that

the visit to Gk—1 sctually improves the accuracy of uk. This can be seen as

follows. The error in the iterate nk before the transfer to Gk_1 is given by
N

old error = v& = Ek ek (5.22)

=

From (3.5), the new error in after coming back from a visit to Gkl is
given by
-k _ X k-1
new error = v Y1 Izg-.1 V- (5.23)

In view of (5.4) and (5.6), the above gives:

N
-1
~ b 3
new error Zil (ai—wk -1 i )§i + higher modes
N
-1
= Ek (1 - Wiy 8 : -1 / ak) a E + higher modes (5.24)
=]
From (5.5), (5.7) and (5.20), we have
o1y a = u !/ n k-l

and therefore we can write the new error in (5.24) as:

-1
~ k, k-1, k.k .
nev error = §i1 a- wk_lpi/pi agd, + higher modes. (5.25)
For obvious efficiency and comvergence considerations, the new error should
preferably be less than the old error, st least for the lower modes. In other

words, condition (5.21) should be strengthened to

- w /uk 1 (1, (5.26)

-1¥

0 Cw pi/pk 1 ¢, for 1IN, . (5.27)

R,




e o T PR A Ao A

- 32 -

Now if the ratios of eigenvalues in (5.21) are not close to unity, the
interpolation factors, ¥g-1+ should be chosen so that condition (5.27) is
satisfied. Otherwise the new error cam be larger than the old error in some

modes.

It should be pointed out that, in genmeral, condition (5.27) is not
necessary for the convergence of the Cycle C algorithm. This is the case, for
instance, if L and the Lk's are all positive definite. Then Gauss-Seidel
sweeps on any grid Gk will reduce the amplitude of every mode preseat in the
error. In such cases, convergence on any grid can be achieved by merely doing
enough relaxation sweeps, Then it is not necessary for the next coarser grid
t> provide any improvement on the current iterate, although it would obviously
improve the efficiency of the overall algorithm if it does so. In fact, the
MG method derives its efficiency from the very fact that the coarser grids do

k in the lower modes. These are

provide improvements in the current iterate u
precisely those modes that have poor convergence rates for the relaxation
sweeps on Gk. Thus, even in the positive definite case, it is important (from

an efficiency viewpoint) that conditions (5.27) hold, at least for small i's.

If the operator L and the Lk's are indefinite the sitvation is different
becanse some modes will grow if we simply perform relaxation sweeps on a fixed
grid. Such modes have to be corrected by going to coarser grids and using a
direct method on the coarsest grid. Further the interpolation factors, V-1’
should be chosen such that condition (5.27) is satisfied for these modes.

Condition (5.27) has been suggested by Brandt [4] for indefinite oproblems,

e - i o
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Bowever as we show later, most nonlinear eigenvalue problems with limit points

and bifurcation points abound with indefinite operators but they do not cause
difficulties in the sense of violating condition (5.27). Essentially only ome
mode causes problems on each ¢k and it is the mode that correspond to the
eigenvalue that is nearest zero as the singular point is approached. Merely
including the interpolation factors so that condition (5.27) is satisfied
torns out to be very imefficient. Further, it is not clear that such factors,

¥y-1+ can be found at all in this case.

Another source of difficulty is that the process of inmterpolating vkl

into Gk introduces high frequency errors. That is, the exact relation

corresponding to (5.10) is:

N
k k-1 _ .k kK ,k . )
Ik—l gi = Ei + bij EJ » 1 1.2......Nk_1,
J=1
for 11N (5.28)

k-1’
and the coefficients b:j may be large for j > N, _,. This would result in a
violation of (5.12). ©Fortunately, these high frequency errors are very

efficiently smoothed out by the subsequent relaxation sweeps on Gk, and thus

these errors are automatically corrected.

For elliptic operators which are 'far’ from being singular and with a
reasonable grid system {Gk} condition (5.27) can be assured. For example, if
L is the negative Laplacian, -A, on a unit square with Dirichlet boundary

conditions, then it is known (e.g. [9]) that the eigenvalues of L are given

by




- 34 -
B = (nm)2 + (nﬂ)z. (5.29)

The corresponding eigenfunctions are:

§

m,p = §in (mnx) sin (any). (5.30)

These eigenfunctions evaluated at the discrete interior grid points of a

uniform mesh on the unit square, give the eigenfunctions of the discrete

S5-point approximations, Lk = —Ah' with h being the uvniform mesh size. The

eigenvalues of Lk are, with &6x = &y = hk:

":.n = 4[sin2(mﬂhk/2) + sinz(nﬂhk/Z)] / hi. (5.31)

Some of these eigenvalues are tabulated in Table 5-1 for various mesh sizes,

hk’ The ratios p: n/pi_i are given in Table 5-2. We see from Table 5-2 that
condition (5.27) is satisfied, with *r1 = 1, for all lower modes shown.

These ratios are very close to unity, even for the case where the coarsest
grid has only ome interior point. We have seemn from condition (5.11) that
this closeness to nunity is very desirable and this fact partly explains the

well-documented success of MG methods for the Laplacian operator.

Near the limit point of the Bratu problem, the operator L = Gu = A+ el
behaves very much like a shifted Laplacian operator. Clearly, if the factor

e were replaced by a constant, a say, then Gu is replaced by the the

k k-1

Laplacian operator with a shift al. Then the eigenvalue ratio By l/pl 1

valid for ah = 0, is replaced by:
(ull‘.l - ax)/(pffi ~ ar). (5.32)

Since 0 ¢ u ¢ 1.4 the factor e® does mot vary much and we assume this

approximation to be valid for some e¢ > 0. The situation is depicted

e
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x
Table 5-1: p for - A
mn,n hk
|
*
+ +—— + - + + + !
lx =1 0 I 1 } 2 } 3 ] e J £
+— — + +— + +— + 1
:(m.n)l‘ Bo=1/2 | m=1/4 | Bn=1/8 | By=1/16 | b= 0 } ;
M M M M M f
| | | | | | | ;
I 1,1 { 16.0 : 18.745 = 19.487 I 19.676 | 19,739 ; A
| :
] 2,1 1] NA | 41.37258 | 47.238 | 48.812 | 49,348 | ¢
I 1,2 : NA } 41,37258 i 47,238 i 48.812 : 49.348 l ;
: 2,2 : NA { 64.0 = 74.981 = 77.947 { 78.957 {
| 3,11 NA | NA | 88.760 | 96.126 | 98.696 |
: 1,3 : NA { NA : 88.760 : 96.126 : 98.696 :
| 3,2 | NA | NA [ 116.507 [ 125.261 | 128.305 |
} 2,3 : NA ’ NA } 116.507 l 125.261 : 128,305 } E
} 3.3 } NA ‘ NA I 158.033 : 172.575 : 177.653 I *

i,




1.17
NA
NA
NA
NA
NA
NA
NA
NA

.
s

[ -3
~
L]
[}
-
-
.nqx - on m < 00 w0 0 -3
i Lol - - - - - i
| ~
Lml
.0.. [}
N Fy
-~ = o l..ﬁ e G T— Y S —— I S G G— —  Sht Gm— G S— .,?
K
M H ~
4 ~
~ ~
| -] ]
b Ll
“ ku.m |
: o S I3 % o« <
- o
] ) . NM MN M
“ U vy - i -
- o
) 1
w
N
L'l ~
-y -
3 "
3] |
<
~
W
A
<
=
-]
H
~




- 37 -

Figure 5-1: Spectrum of Shifted Laplacian
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graphically in Figure 5-1 for the grid system that was used for Table 5-1. As
the shift alA approaches the group of eigenvalues corresponding to the (1,1)
mode from below, the ratios in (5.31) increase., As o) continues to increase
the ratio of eigenvalues will become greater than 2, then increase towards +«,
jump to -= discontinuosly, and start increasing from ~= to 1. The situation

is depicted in Figure 5-2.

We thus see, under the above assumptions, that condition (5.27) is first
violated by the lowest mode (i.e. the (1,1) mode) on the two coarsest grids G0
and Gl. In fact the lowest eigenvalues for the Bratu problem computed at the
first point on the solution branch where Cycle C diverged, yields the ratio
almost exactly 2! On the other hand, even at this point, comdition (5.27) is
satisfied by the (1.,1) modes omn the finer grids. In other words, the
divergence of Cycle C is seen to be caused by one near-singular grid out of
the whole hierachy of grids present. The mode that becomes singular at the
l1imit point of the Bratu problem is the (1,1) mode, and this occurs first on
the G0 grid. As the limit point is approached, Lk on some of these grids may
even become indefinite, while others (the finer grids) may still be positive
definite. Essentially, the near—singular grid causes the (1,1) mode component
of the correction vk_l, when viewed as an spproximation to vk, to have the
right direction, but the wrong magnitude. This phenomenon is not limitted to
the Bratu problem. The only thing special about this problem is that it is
the eigenvalue of the (1,1) mode that becomes zero at the limit point. For

other problems, the eigenvalue of the operator L. that becomes zero as the
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Figure 5-2: Spectrum Near Singular Point
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singular point is approached might correspond to other modes. Although the
singuolar point in the Bratu problem is a limit point, we can expect the same

behavionr at a bifurcation point.

Having now understood the cause of the divergence of the MG method, in

the next section we shall discuss some modifications to the basic Cycle C

aslgorithm that are designed to overcome such difficulties,
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6. Remedies and Nev Algorithms

In this section we discuss approaches that have been devised to overcome
the difficulties with the MG method near singular points. The first gosl is
to modify the basic Cycle C algorithm so that it will converge for values of A
close enough to the limit point so that the arc-lenmgth continnation procedure
can take us past the limit point onto the wupper solution branch, A more
ambitious goal is to modify Cycle C further so that it will converge
arbitrarily close to the singular point. Such an algorithm, when used in
conjunction with the arc-length continuation technique for tracing solution
branches, will make the overall algorithm much more robust. Moreover, such an
slgorithm may prove to be useful for locating singular points accurately,
either using an arc-length continuation based procedure [13], or some other
procedure that uses the operator G near the singular point [22]. We shall
see that the first goal is relatively easy to achieve, whereas the second goal
is much more difficult. However, we have devised a Cycle C based algorithm
that has performed very well when applied very close to the limit point. The
approaches that we have tried and that lead to the final algorithm will be
discussed in this section. We shall describe them in the sequence that they

were tried.

Before we proceed, however, we have to explain a few general strategies
that were used. First of all, Gauss-Seidel and many other relaxation schemes

are not very effective in smoothing the lower modes, especially modes with

near zero eigenvalues., Hence, these modes must be eliminated by means other

ol MER guars Do
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than relaxation, even on the coarsest grid. Therefore, unless stated
otherwise, we shall use a direct solution on the coarsest grid even though the
operators Lk's may be positive definite. This does not affect the overall
efficiency very much because the coarsest grid has so few points that direct

solution is very fast and efficient.

Another strategy concerns the treatment of the mode that causes the
divergence; that is the mode with a near zero eigemvalue, say tl. In all the
algorithms that are discussed, this mode is treated separately from the other
modes. To do this, it is essential to have approximations to this mode and to
its corresponding eigenvalues, say E§ and E:, respectively. Here we have to
strike a balance between accuracy and efficiency. If we compute the {:
exactly, then we can completely eliminate the tt error components on each

grid. Thus, the problem on Gk can be reduced to ome in which o¥ is zero (see

1
(5.25)). When this is done, we do not need to satisfy comdition (5.27) for
this mode. On the other bhand, the work involved im computing accurate
approximations to p: and t: for each k would be at least as much as solving
the original 1linear system. Our compromise has been to compute an
approximation 22 to {1 on the coarsest grid, Go. by & few steps of inverse
iteration with zero shift (since the eigenvalue we want is near zero). This
is very inexpemsive since Go is quite coarse and the LU factors of Lo are

already available. Then we interpolate Eg onto the finer grids., To eliminate

the high frequency errors introduced inm these interpolations, we do two

things: 1) wuvse higher order interpolation, e.g. cubic instead of linear, 2)
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smoothk the interpolated eigenfunctions by performing s few relazation sweeps 1
on Lk &? = 0, Estimates of the eigenvalues, i:' are then computed wusing the

Rayleigh OQuotients: (E:.ka§>. Ve view this as a preprocessing phase of the

slgorithm and the extra work is usually minimal compared to the overall work.
Furthermore, since the eigenfunctions (nmot the eigemvalues) do not change very
muck in the neighborbood of the singular points, we can use the same

approximation for different limearized operators Lk. The storage required to

store these eigenfunctions is less than twice the size of the fimest grid.

We use the (n,8) adaptive version of the Cycle C algorithm, unless

otherwise stated. The first modified algorithm is the following.

6.1 Under- and Over— Interpolation
The idea is to choose vy _q in (3.5) for imterpolation onmto Gk, such that
condition (5.27) is satisfied for 61. Clearly the value:
-k-1,-k
wk_l = “1 Il-ll » (6.1)

is in some sense optimal since it eliminates the §1 term in (5.25). For the

case discussed in Section 4.3, this modification allows the computation to

Y R ARG 4, 1, I DTS PN U B R X

continue past the point A = 6.804, where divergence of Cycle C first occurred.
In fact (with a little luck) we succeeded ir continuing around the limit point

onto the upper branch. Here the eigenfunction &1 no longer presented

e omay okl e rw

difficulties for the MG algorithm. For some of these cases ug is actually
negative and therefore (6.1) yields a a negative value for I In this case

the transfer from Go to ¢l violates condition (5.27) for all modes gther than

61. The errors in these modes must be reduced by extra relazation sweeps on
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efficiency of the algorithm thus suffers. This effect is especially
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Gl. In other words Go only provides s proper correction om 61 for the &1 y
mode, all higher modes are treated inmcorrectly during the transfer. The [
I

1

{

pronounced if some factors ¥y are either very large or mnegative or (worse)
both. The algorithm is very semsitive to the parsmeters (n,5) and tkhus is not
robust. It can even diverge if the higher modes are not reduced fast emough

on G* after the transfer from GE 1,

Even worse, the above algorithm will not work for indefinite problems in

which some intermediate eigenvalue is near zero. For example, if the spectrs

of the Lk are similar to those in Figure 6-1, the interpolation factors ¥, are
controlled by the §§ belonging to eigenvalues u§ near 2ero. On the other
hand, the eigenfunctions {Elrequire that condition (5.27) be satisfied because
these modes cannot be liguidated by relaxation. Conflicts can occur when §§
requires Wy to be negative while §f1requires v to be positive. Indefinite
problems of this type occur frequently in nomlinear eigenvalue problems. Mere
under- or over—interpolation must run into difficulties for suck problems,

near the singular points.

The above considerations make it clear that the eigenfunction with the

near-zero eigenvalue must be isolated and treated different from the other

eigenfunctions, We use the approximate eigenfunctions that are computed in

the preprocessing phase for this purpose in the following procedure.
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Figure 6-1: Intermediate Eigenvalue near Zero

Origin
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6.2 Under— and Over— Interpolate the Singular Eigenfunction Only

We use an interpolation different from that in (3.5). Specifically if

-1
1. gk .t'l il (6.2)
k-1 1=1 X
on G ,» We interpolate it onto G by
N1
k k-1.k k-1 _ .k x-1,k-1
v 1% Ik_1§1 +Ik-112 8, Ci . (6.3)

Further ¥x-1 is chosen to satisfy (6.1). Since we only have an approximation
to {i. we use, instead of (6.3):
Yl P CollR R Coatlt St
swoFLE kg, (6.4)

In practice, this performed much better than indiscriminate under— and

over—interpolation described in section 6.1. It was the more efficient when

both procedures worked. In many cases when (6.1) yields large and/or negative

values for v only the current scheme converges. In principle, it will also

work for indefinite problems like that depicted im Figure 6-1. The efficiency

in most cases was very respectable; in the range of 6-10 units per order of
magnitude reduction in the residual. Jt is also quite insensitive to the

parsameters (n,5). Thus, it can be used very efficiently and reliably with the

arc~length continuation procedure for tracing out solutiom branches.

Unfortunately, this improved algorithm fails when the magnitude of *y

becomes too large. This occurs when Lk is very nesrly singular, that is with

ui very close to zero, Since we only have an approximation E§ to t?. large

factors w, in (6.4) introduce very large errors in the other modes. Moreover,

prrver—y AR e e
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the estimates ﬁi using Rayleigh—-Quotients tend to be too large (relatively) !
when u{ is very small., Then (6.1) gives a value of vy that is too small.
Both of the above result in lower efficiency and reliability. In extreme
cases, this makes the algorithm impractical. To overcome this difficulty, we
devise an algorithm that will work even if ome of the operators Lk is very ‘

nearly singular, For this we employ the idee of skipping a grid.

6.3 Skipping the Singular Grid

The previous algorithm fails if the operator is very mearly singular on

the hierachy of grids used by the MG algorithm., If the remaining grids are
not as singular as the deleted grid it would seem that the algorithm described
in 6.2 should work. However, calculations show that skipping a grid camn cause

other problems. When Gk is skipped, the mesh changes more drastically from

k-1 o ok k+1 ko

G , and hence the interpolation in (6.4) (now Ik-l instead of Ik—l

|
f(
one of the grids, say Gk. The idea here is to simply delete this grid from q
introduces larger errors into the higher modes on Gkﬂ. These high frequency %
errors can csuse divergence of the MG process unless controlled properly by 4

the parameters (n,d). A large value of n, say between .8 and .9, makes the H

say .5. V¥We encountered a cese where, with all else the same, the new skipping
slgorithm converges for n = .9 but diverges for n = .6, Granted with n = .9
the algorithm may be very reliable, such sensitivity to one parameter is very

slgorithm more robust but involves more work than for a smaller valuve of 1, :
undesirable. Therefore, we considered the following modification.

WSO - NS, S0 FOr S e
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6.4 Skipping the Singular Grid for the Singular Eigenfunction Only

The idea is to skip the singular grid Gk for &1 only, and to keep it for
smoOtking the other modes. In the actual implementation, we modify the

algorithm described in section 6.2 to use

-k-1 -
k-1 "‘1l / "11“1 (6.5)

for &1 and Y1 = 1 for all other modes to transfer from Gk"1 to Gk end, after

k+1

W

a8 few smoothing sweeps on Gk, transfer to G with v = 1 for all modes.
Note that we do not try to solve the Gk equations for vk. Trying to do that
would result in 1large magnification of the &: compomnent in vk, since pi is

near zero. This would in turn caunse problems during the tramsfer to Gk+1.

.

In addition, we have experimented with using a mixture of the adaptive
(n, &) strategy with the non-adaptive (p,q) strategy (cf. section 3.2). VWe
bave found 2 (n,q) strategy that is as good as any other we have tried. In
this strategy, we use n to control when we terminate relaxation om a certain
grid and go on to a coarser grid, and use q to control how many sweeps to do
on a grid after transfer from a coarser grid before interpolating onto a finer
grid. A typical set of parameters that worked well is (n = .6, q = 2). The
resulting algorithm is fairly insemsitive to actual values of n and q and is
quite robust. It is also gquite efficient. It comsistently achieved an
efficiency of less than about 12 units per order of magnitude reduction in the
residual for most problems that we have encountered. Some of these problems
bhave very sinmgular grids which presented difficulties for all of the previous

algorithms.

e
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7. Summary

In this paper, we study arc-length continuation techniques and multi-grid
techniques for solving mnonlinear elliptic eigenvalue problems. We have
applied these techniques to solve & model nonlinear elliptic eigenvalue
problem (the Bratu problem). We have found that as long as we stay away from
singuler points, the two techniques combined to give & very powerful and
efficient procedure for tracing solution branches. Near singular points,
however, the standard multi-grid method has difficulty converging on the
linearized elliptic systems that arise in the continuation procedure. One
consequence is that we cannot continue past the 1limit point in the model
problem. This divergence is successfully analysed and several modified
multi-grid algorithms have been designed based on this analysis. The best of
these modified algorithms performs efficiently and reliably arbitrarily close
to the singular points. This enables the continuation procedure to continue
past the 1limit point with no difficulty. It seems reasonable that this

modified multi-grid algorithm can be useful in more general situstions where

nearly singular elliptic systems arise, such as in inverse iteration [11, 17].
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